6 research outputs found

    Advanced Image Analysis for Modeling the Aging Brain

    Get PDF
    Both normal aging and neurodegenerative diseases such as Alzheimer’s disease (AD) cause morphological changes of the brain due to neurodegeneration. As neurodegeneration due to disease may be difficult to distinguish from that of normal aging, interpretation of magnetic resonance (MR) brain images in the context of diagnosis of neurodegenerative diseases is challenging, especially in the early stages of the disease. This thesis presented comprehensive models of the aging brain and novel computer-aided diagnosis methods, based on advanced, quantitative analysis of brain MR images, facilitating the differentiation between normal and abnormal neurodegeneration. I aimed to evaluate and develop methods for clinical decision support using features derived from MR brain images: I evaluated a classification method to predict global cognitive decline in the general population, evaluated five brain segmentation methods and developed a spatio-temporal model of morphological differences in the brain due to normal aging. To create this model I developed two novel techniques that allow performing non-rigid groupwise image registration on large imaging datasets. The novel aging brain models and computer-aided diagnosis methods facilitate the differentiation between normal and abnormal neurodegeneration. This will help in establishing more accurate diagnoses of patients, and in identifying patients at risk of developing neurodegenerative disease before symptoms emerge. In the future, the method’s performance and efficacy should be evaluated in clinical practice

    Intrasubject multimodal groupwise registration with the conditional template entropy

    Get PDF
    Image registration is an important task in medical image analysis. Whereas most methods are designed for the registration of two images (pairwise registration), there is an increasing interest in simultaneously aligning more than two images using groupwise registration. Multimodal registration in a groupwise setting remains difficult, due to the lack of generally applicable similarity metrics. In this work, a novel similarity metric for such groupwise registration problems is proposed. The metric calculates the sum of the conditional entropy between each image in the group and a representative template image constructed iteratively using principal component analysis. The proposed metric is validated in extensive experiments on synthetic and intrasubject clinical image data. These experiments showed equivalent or improved registration accuracy compared to other state-of-the-art (dis)similarity metrics and improved transformation consistency compared to pairwise mutual information

    Predicting Global Cognitive Decline in the General Population Using the Disease State Index

    Get PDF
    Background: Identifying persons at risk for cognitive decline may aid in early detection of persons at risk of dementia and to select those that would benefit most from therapeutic or preventive measures for dementia. Objective: In this study we aimed to validate whether cognitive decline in the general population can be predicted with multivariate data using a previously proposed supervised classification method: Disease State Index (DSI). Methods: We included 2,542 participants, non-demented and without mild cognitive impairment at baseline, from the population-based Rotterdam Study (mean age 60.9 ± 9.1 years). Participants with significant global cognitive decline were defined as the 5% of participants with the largest cognitive decline per year. We trained DSI to predict occurrence of significant global cognitive decline using a large variety of baseline features, including magnetic resonance imaging (MRI) features, cardiovascular risk factors, APOE-ε4 allele carriership, gait features, education, and baseline cognitive function as predictors. The prediction performance was assessed as area under the receiver operating characteristic curve (AUC), using 500 repetitions of 2-fold cross-validation experiments, in which (a randomly selected) half of the data was used for training and the other half for testing. Results: A mean AUC (95% confidence interval) for DSI prediction was 0.78 (0.77–0.79) using only age as input feature. When using all available features, a mean AUC of 0.77 (0.75–0.78) was obtained. Without age, and with age-corrected features and feature selection on MRI features, a mean AUC of 0.70 (0.63–0.76) was obtained, showing the potential of other features besides age. Conclusion: The best performance in the prediction of global cognitive decline in the general population by DSI was obtained using only age as input feature. Other features showed potential, but did not improve prediction. Future studies should evaluate whether the performance could be improved by new features, e.g., longitudinal features, and other prediction methods

    Normative brain volumetry derived from different reference populations: Impact on single-subject diagnostic assessment in dementia

    Get PDF
    Brain imaging data are increasingly made publicly accessible and volumetric imaging measures derived from population-based cohorts may serve as normative data for individual patient diagnostic assessment. Yet, these normative cohorts are usually not a perfect reflection of a patient’s base population, nor are imaging parameters such as field strength or scanner type similar. In this proof of principle study, we assessed differences between reference curves of subcortical structure volumes of normal controls derived from two population-based studies and a case-control study. We assessed the impact of any differences on individual assessment of brain structure volumes. Percentile curves were fitted on the three healthy cohorts. Next, percentile values for these subcortical structures for individual patients from these three cohorts, 91 mild cognitive impairment (MCI) and 95 Alzheimer’s Disease (AD) cases and patients from the Alzheimer Center (AC) were calculated, based on the distributions of each of the three cohorts. Overall we found that the subcortical volume normative data from these cohorts is highly interchangeable, suggesting more flexibility in clinical implementation

    Normative brain volumetry derived from different reference populations: Impact on single-subject diagnostic assessment in dementia

    Get PDF
    Brain imaging data are increasingly made publicly accessible and volumetric imaging measures derived from population-based cohorts may serve as normative data for individual patient diagnostic assessment. Yet, these normative cohorts are usually not a perfect reflection of a pat

    Predicting Global Cognitive Decline in the General Population Using the Disease State Index

    Get PDF
    Background: Identifying persons at risk for cognitive decline may aid in early detection of persons at risk of dementia and to select those that would benefit most from therapeutic or preventive measures for dementia. Objective: In this study we aimed to validate whether cognitive decline in the general population can be predicted with multivariate data using a previously proposed supervised classification method: Disease State Index (DSI). Methods: We included 2,542 participants, non-demented and without mild cognitive impairment at baseline, from the population-based Rotterdam Study (mean age 60.9 ± 9.1 years). Participants with significant global cognitive decline were defined as the 5% of participants with the largest cognitive decline per year. We trained DSI to predict occurrence of significant global cognitive decline using a large variety of baseline features, including magnetic resonance imaging (MRI) features, cardiovascular risk factors, APOE-ε4 allele carriership, gait features, education, and baseline cognitive function as predictors. The prediction performance was assessed as area under the receiver operating characteristic curve (AUC), using 500 repetitions of 2-fold cross-validation experiments, in which (a randomly selected) half of the data was used for training and the other half for testing. Results: A mean AUC (95% confidence interval) for DSI prediction was 0.78 (0.77–0.79) using only age as input feature. When using all available features, a mean AUC of 0.77 (0.75–0.78) was obtained. Without age, and with age-corrected features and feature selection on MRI features, a mean AUC of 0.70 (0.63–0.76) was obtained, showing the potential of other features besides age. Conclusion: The best performance in the prediction of global cognitive decline in the general population by DSI was obtained using only age as input feature. Other features showed potential, but did not improve prediction. Future studies should evaluate whether the performance could be improved by new features, e.g., longitudinal features, and other prediction methods.ImPhys/Computational ImagingBiomechanical Engineerin
    corecore